These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of potassium depletion on cerebrospinal fluid bicarbonate homeostasis.
    Author: Nattie EE, Tenney SM.
    Journal: Am J Physiol; 1976 Aug; 231(2):579-87. PubMed ID: 8997.
    Abstract:
    We have examined the effect of K depletion on CSF [HCO3-] homeostasis in awake rats. The relationship of CSF [HCO3-] to arterial [HCO3-] in metabolic acid-base disturbances is displaced is an upward direction and has a significantly increased slope in K-depleted vs. control rats (0.51 +/- 0.02 vs. 0.42 +/- 0.02). Results of partial K-repletion experiments, with peripheral acid-base balance held constant, suggest that the effect is K specific. The K-depleted animals also exhibit a wider (CSF-arterial) PCO2 difference than controls (11.1 vs. 8.4 mmHg). When CSF [HCO3-] is shown as a function of CSF PCO2 the data of K-depleted rats are no longer displaced when compared to controls but still have a significantly greater slope (1.21 +/- 0.23 vs. 0.89 +/- 0.08). This increased slope is interpreted to reflect enhanced HCO3- movement from blood to CSF at high arterial [HCO3-]. Analysis of our data and observations from the literature in conditions of mixed acid-base disturbances suggest that CSF [HCO3-] is determined by a) CSF PCO2 and b) the level of arterial [HCO3-] when the latter is greater than the normal CSF [HCO3-].
    [Abstract] [Full Text] [Related] [New Search]