These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Erythrocyte flow and elasticity of microvessels evaluated by marginal cell-free layer and flow resistance. Author: Maeda N, Suzuki Y, Tanaka J, Tateishi N. Journal: Am J Physiol; 1996 Dec; 271(6 Pt 2):H2454-61. PubMed ID: 8997305. Abstract: Flow dynamics of human erythrocytes was compared in elastic (E) and hardened (H) microvessels with inner diameters of 10-40 microns. The thickness of the marginal cell-free layer and the overall flow resistance were measured with a vascular bed isolated from rabbit mesentery (E vascular bed) as well as with a 4% paraformaldehyde-fixed bed (H vascular bed). 1) In both E and H microvessels, the thickness of the cell-free layer increased with increasing inner diameter of the microvessels and with decreasing hematocrit accompanied by an overall decrease in the flow resistance. The hematocrit-dependent change of the cell-free layer thickness was greater in the E microvessels than in the H microvessels. The flow resistance was always greater in the H vascular beds than in the E vascular beds. 2) With decreasing erythrocyte deformability induced by treatment with 2 mM diazenedicar-boxylic acid bis(N,N-dimethylamide), the thickness of the cell-free layer decreased at a low hematocrit in the E microvessels and at a high hematocrit in the H microvessels, although the flow resistance was increased in both vascular beds. 3) Dextran of 70,400 average molecular weight accelerated the formation of the cell-free layer by inducing erythrocyte aggregation. A drastic increase in the cell-free layer thickness at 2-4 g/dl of dextran in the E microvessels and at 1-2 g/dl of dextran in the H microvessels was accompanied by a significantly lower increase in the flow resistance. This study concludes that the elasticity of microvessels may play an important role for reducing the overall flow resistance of a vascular bed, which is modulated by the marginal cell-free layer, itself a function of the rheological properties of the erythrocytes.[Abstract] [Full Text] [Related] [New Search]