These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Tissue-specific alterations in insulin-like growth factor-I concentrations in response to 3,3',5-triiodo-L-thyronine supplementation in the growth hormone receptor-deficient sex-linked dwarf chicken.
    Author: Vasilatos-Younken R, Dunnington EA, Siegel PB, McMurtry JP.
    Journal: Gen Comp Endocrinol; 1997 Jan; 105(1):31-9. PubMed ID: 9000465.
    Abstract:
    Insulin-like growth factor-I (IGF-I) mediates many of the effects of growth hormone (GH). The regulation of IGF-I, independent of GH, is methodologically difficult to assess in vivo, as hypophysectomy results in derangement of many pituitary hormone axes in addition to GH, and a gene knockout model is not available. The recessive sex-linked dwarfing (SLD) gene (dw) in chickens results in a lack of functional target tissue GH receptors due to a variety of molecular defects, which provides a unique model for evaluating GH-independent regulation of IGF-I. In the present study, the impact of 3,3', 5-triiodo-l-thyronine (T3) on circulating and tissue IGF-I was determined in normal versus SLD birds. Adult, nonovulatory female normal and SLD chickens were restrict-fed 40 g of feed/kg bw/day containing 0, 0.5, or 1.0 ppm T3, resulting in supplementation levels of 0 (control), 20 (low dose), or 40 (high dose) microg T3/kg bw/day for 10 days. Samples of GH target tissues including liver, abdominal fat pad, skeletal muscle (pectoralis major), and spleen were extracted and assayed for IGF-I. Plasma T3, T4, GH, and IGF-I were determined by homologous RIA. Tissue GH binding was determined for hepatic membranes by radioreceptor assay. Under control conditions, dwarf chickens were markedly hypersomatotropic (33.3 +/- 4.1 ng GH/ml plasma; mean +/- SEM) compared to normals (2.4 +/- 3.9 ng/ml), and T3 supplementation reduced this to normal levels. Despite the high circulating level of GH in dwarfs, plasma IGF-I was low compared to normal controls (dwarfs 1.5 +/- .9 ng/ml; normals 5. 3 +/- .9 ng/ml; P = 0.004), but this difference was eliminated with low-dose T3. In this study, tissue IGF-I was undetectable in liver and pectoralis muscle in adults (55 weeks of age) of both genotypes, under all treatments. In contrast, adipose tissue IGF-I was relatively high and did not differ (P = 0.84) between genotypes under control conditions (normals 776.5 +/- 236.7; dwarfs 844.6 +/- 236.7 pg/mg protein), but was increased in normals and decreased in dwarfs, resulting in higher levels (P = 0.02) in the normal (1249.9 +/- 200.0 pg/mg protein) than in the dwarf genotype (558.4 +/- 200.0 pg/mg protein) at the higher level of T3 supplementation. This relationship was somewhat reversed in spleen, where T3 tended to decrease tissue IGF-I concentration in normals and increase it in dwarfs. The low level of plasma IGF-I despite nonmeasureable hepatic IGF-I tissue concentrations suggests that IGF-I synthesis by extrahepatic tissues contributes to the circulating pool of IGF-I. The relatively high control levels of adipose tissue IGF-I in the dwarf genotype further suggest that considerable IGF-I synthesis exists that is GH-independent in this extrahepatic tissue. The presence of GH action, however, may mediate the effects of other hormones that can influence local IGF-I production in this tissue, as reflected by the differential response to T3 supplementation between genotypes. The tissue-specific nature of the effect of T3 on IGF-I production supports an additional point of regulation of hormone action at the target tissue level.
    [Abstract] [Full Text] [Related] [New Search]