These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Anabaena flos-aquae and other cyanobacteria possess diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A) phosphorylase activity.
    Author: McLennan AG, Mayers E, Adams DG.
    Journal: Biochem J; 1996 Dec 15; 320 ( Pt 3)(Pt 3):795-800. PubMed ID: 9003364.
    Abstract:
    Diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A) phosphorylase, previously only known in lower eukaryotes, has been detected in extracts of the cyanobacteria Anabaena flos-aquae, Anabaena variabilis and Synechococcus sp. The 32 kDa enzyme was partially purified from A. flos-aquae and separated from a 23 kDa hydrolytic activity. It had a pH optimum of 9.5 and required a bivalent cation for activity: Mg2+, Mn2+, Ca2+, Co2+ or Zn2+. Diadenosine tri-, tetra- and penta-phosphates were all effective substrates (relative rates 0.85, 1.00 and 0.27 respectively), while the hexaphosphate was a poor substrate and the diphosphate was inactive. ADP was always one of the products of phosphorolysis. Arsenate and vanadate could substitute for phosphate (relative rates 1.80, 2.25 and 1.00 respectively), but tungstate and sulphate could not. Chromate and molybdate were poor substrates. A search of the GenBank non-redundant database revealed a putative Ap4A phosphorylase gene in the cyanobacterium Synechocystis sp. The gene showed significant blocks of identity/similarity with yeast Ap4A phosphorylases I and II, particularly the latter.
    [Abstract] [Full Text] [Related] [New Search]