These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Linker mutagenesis of the Caulobacter crescentus S-layer protein: toward a definition of an N-terminal anchoring region and a C-terminal secretion signal and the potential for heterologous protein secretion.
    Author: Bingle WH, Nomellini JF, Smit J.
    Journal: J Bacteriol; 1997 Feb; 179(3):601-11. PubMed ID: 9006010.
    Abstract:
    Linker insertion mutagenesis was used to modify the paracrystalline surface layer (S-layer) protein (RsaA) of the gram-negative bacterium Caulobacter crescentus. Eleven unique BamHI linker insertions in the cloned rsaA gene were identified; at the protein level, these linker insertions introduced 4 to 6 amino acids at positions ranging from the extreme N terminus to the extreme C terminus of the 1,026-amino-acid RsaA protein. All linker-peptide insertions in the RsaA N terminus caused the secreted protein to be shed into the growth medium, suggesting that the RsaA N terminus is involved in cell surface anchoring. One linker-peptide insertion in the RsaA C terminus (amino acid 784) had no effect on S-layer biogenesis, while another (amino acid 907) disrupted secretion of the protein, suggesting that RsaA possesses a secretion signal lying C terminal to amino acid 784, near or including amino acid 907. Unlike extreme N- or C-terminal linker-peptide insertions, those more centrally located in the RsaA primary sequence had no apparent effect on S-layer biogenesis. By using a newly introduced linker-encoded restriction site, a 3' fragment of the rsaA gene encoding the last 242 C-terminal amino acids of the S-layer protein was expressed in C. crescentus from heterologous Escherichia coli lacZ transcription and translation initiation information. This C-terminal portion of RsaA was secreted into the growth medium, confirming the presence of a C-terminal secretion signal. The use of the RsaA C terminus for the secretion of heterologous proteins in C. crescentus was explored by fusing 109 amino acids of an envelope glycoprotein from infectious hematopoietic necrosis virus, a pathogen of salmonid fish, to the last 242 amino acids of the RsaA C terminus. The resulting hybrid protein was successfully secreted into the growth medium and accounted for 10% of total protein in a stationary-phase culture. Based on these results and features of the RsaA primary sequence, we propose that the C. crescentus S-layer protein is secreted by a type I secretion system, relying on a stable C-terminal secretion signal in a manner analogous to E. coli alpha-hemolysin, the first example of an S-layer protein secreted by such a pathway.
    [Abstract] [Full Text] [Related] [New Search]