These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cyclopiazonic acid-induced changes in contractile activity of smooth muscle strips isolated from cat and guinea-pig stomach. Author: Petkov GV, Boev KK. Journal: Eur J Pharmacol; 1996 Dec 27; 318(1):109-15. PubMed ID: 9007521. Abstract: The effects of cyclopiazonic acid (CPA), a specific inhibitor of sarcoplasmic reticulum Ca(2+)-ATPase, on contractile activity of circular smooth muscle strips isolated from the antrum, corpus and fundus regions of the cat and guinea-pig stomach were studied. Contractile activity was recorded under isometric conditions, in organ baths. CPA, concentration dependently (3 x 10(-7)-3 x 10(-5) M) increased the tone of the cat and guinea-pig gastric fundus and corpus as well as the amplitude of the phasic contractions of the cat corpus and antrum, affecting their frequency. CPA had a dual action on the phasic contractions of the guinea-pig antrum: an increase at low concentrations (up to 10(-6) M) and inhibition at high concentrations (10(-6)-3 x 10(-5) M). Tetrodotoxin (10(-6) M), atropine (10(-6) M) and N omega-nitro-L-arginine (10(-4) M) did not change significantly the effects of CPA. Nifedipine completely inhibited the CPA-induced phasic contractions and partly inhibited the CPA-induced tonic contractions. The nitric oxide-releasing agents, sodium nitroprusside (10(-3) M) and 3-morpholino-sydnonimine (10(-3) M), completely inhibited the CPA-induced tonic and phasic contractions. CPA induced tonic contractions in the cat and guinea-pig gastric fundus precontracted by acetylcholine (10(-5) M) and inhibited the acetylcholine (10(-6) M)-induced phasic contractions in the guinea-pig gastric antrum and corpus. The results suggest multiple roles for sarcoplasmic reticulum Ca2+ stores and sarcoplasmic reticulum Ca(2+)-ATPase in the shaping of spontaneous and evoked tonic and phasic contractions of the stomach, and highlight important species and tissue differences.[Abstract] [Full Text] [Related] [New Search]