These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Co-expression of several molecular mechanisms of multidrug resistance and their significance for paclitaxel cytotoxicity in human AML HL-60 cells. Author: Huang Y, Ibrado AM, Reed JC, Bullock G, Ray S, Tang C, Bhalla K. Journal: Leukemia; 1997 Feb; 11(2):253-7. PubMed ID: 9009089. Abstract: Overexpression of P-glycoprotein (PGP), MRP or LRP has been characterized as the 'proximal', while overexpression of the anti-apoptosis Bcl-2 or Bcl-xL relative to the pro-apoptosis Bax protein has been recognized as the 'distal' mechanism of multidrug resistance in human AML cells. In the present studies, we examined whether these mechanisms can co-exist in human AML HL-60 cells. We also determined how these mechanisms would affect the accumulation and cytotoxicity of a PGP substrate, such as Taxol (paclitaxel). For this, immunoblot analyses were performed to determine the expression of PGP, MRP, Myc, Bcl-2, Bcl-xL and Bax on either the multidrug-resistant HL-60 sublines created under the selection pressure of doxorubicin (HL-60/AR), paclitaxel (HL-60/TAX1000) or vincristine (HL-60/VCR), or sublines created by transfection and overexpression of the bcl-2 (HL-60/Bcl-2) or bcl-xL gene (HL-60/Bcl-xL). As compared to the control HL-60, HL-60/AR cells possess high MRP while HL-60/TAX1000 and HL-60/VCR cells express high levels of the mdr-1 encoded PGP. In addition, these multidrug-resistant cells possess 1.5- to 2.5-fold higher Bcl-2, while their Bax and Myc levels are similar to those in the control HL-60 cells. HL-60/TAX1000 and HL-60/VCR cells also express three- and 2.5-fold higher Bcl-xL levels. PGP, but not MRP, overexpression significantly impaired paclitaxel accumulation and paclitaxel-induced apoptosis, as well as reduced its cytotoxic effects as determined by the MTT assay. In contrast, enforced and much higher expression of Bcl-2 in HL-60/Bcl-2 (five-fold) or Bcl-xL in HL-60/Bcl-xL cells (10-fold) significantly reduced paclitaxel-induced apoptosis and the loss of cell viability, without affecting its intracellular accumulation. These results confirm the possibility of co-expression of multiple mechanisms of multidrug resistance in human leukemic cells which had been selected by exposure to a single drug. The results also indicate that MRP overexpression does not confer resistance against paclitaxel. In addition, these findings suggest that, for Bcl-2 and Bcl-xL, enforced overexpression to high levels is necessary to induce paclitaxel resistance in HL-60 cells.[Abstract] [Full Text] [Related] [New Search]