These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Fine substrate specificities of four exo-type cellulases produced by Aspergillus niger, Trichoderma reesei, and Irpex lacteus on (1-->3), (1-->4)-beta-D-glucans and xyloglucan.
    Author: Amano Y, Shiroishi M, Nisizawa K, Hoshino E, Kanda T.
    Journal: J Biochem; 1996 Dec; 120(6):1123-9. PubMed ID: 9010760.
    Abstract:
    To investigate the fine substrate specificities of four highly purified exo-type cellulases (Exo-A from Aspergillus niger, CBHI and CBHII from Trichoderma reesei, and Ex-1 from Irpex lacteus), water-soluble substrates such as barley glucan, xyloglucan from tamarind (Tamarindus indica L.), and their oligosaccharides were employed. Four exo-type cellulases immediately hydrolyzed 3-O-beta-D-cellotriosylglucose to produce cellobiose and laminaribiose. In contrast, CBHII showed no hydrolytic activity towards 3(2)-O-beta-D-cello-biosylcellobiose, which was hydrolyzed to cellobiose by the other exo-type cellulases. These cellulases hydrolyzed the internal linkages of barley glucan and lichenan in an endo-type fashion to produce cellobiose and mix-linked oligosaccharides as main products. The DP-lowering activities of the four exo-type cellulases on barley glucan were in the order of Ex-1, CBHII, Exo-A, and CBHI. Based on gel permeation chromatography analysis of the hydrolysates, Ex-1 seemed to attack the internal cellobiosyl unit adjacent to beta-1,3-glucosidic linkages in barley glucan molecule more frequently than did the other cellulases. Xyloglucan was hydrolyzed only by CBHI and CBHII, and produced hepta-, octa-, and nona-saccharides. In addition, a xyloglucan tetradecasaccharide (XG14) was split only to heptasaccharide (XG7) by CBHI and CBHII.
    [Abstract] [Full Text] [Related] [New Search]