These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Oxidant stress activates a non-selective cation channel responsible for membrane depolarization in calf vascular endothelial cells.
    Author: Koliwad SK, Kunze DL, Elliott SJ.
    Journal: J Physiol; 1996 Feb 15; 491 ( Pt 1)(Pt 1):1-12. PubMed ID: 9011602.
    Abstract:
    1. In vascular endothelial cells, oxidant stress increases cell Na+ content and inhibits the agonist-stimulated influx of external Ca2+. Further, oxidant stress increases uptake of Ca2+ into otherwise quiescent endothelial cells. To determine the mechanism responsible for altered Na+ and Ca2+ homeostasis, the present study examined the effect of oxidant stress on ionic current and channel activity in calf pulmonary artery endothelial cells. 2. Voltage-clamped control cells had a zero-current potential of -60 mV. Incubation of cells with the oxidant tert-butylhydroperoxide (tBuOOH; 0.4 mM, 1 h) caused depolarization to -4 mV and activation of ionic current equally selective for Na+ and K+. 3. Cell-attached membrane patches made on tBuOOH-treated cells contained ion channels that had a bidirectional conductance of 30 pS and that were not present in patches from control cells. Inside-out patches excised from oxidant-treated cells showed the channel to be equally selective for Na+ and K+ and to allow inward Ca2+ current. 4. Oxidant-activated channels were observed to display two gating modalities that were further evident during analysis of single-channel open probability. Neither modality was significantly affected by altering internal [Ca2+] (1 microM-10 nM). 5. Activation of non-selective channels provides a possible mechanism by which oxidants may increase endothelial cell Na+ content. Channel permeability to Ca2+ may account in part for the elevation of cytosolic free [Ca2+] that occurs in oxidant-treated cells. 6. Channel activation is associated with membrane depolarization, a mechanism that may contribute to oxidant inhibition of the agonist-stimulated Ca2+ influx pathway.
    [Abstract] [Full Text] [Related] [New Search]