These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Phosphorylation-independent inhibition by intracellular cyclic nucleotides of brain inwardly rectifying K+ current expressed in Xenopus oocytes.
    Author: Ito H, Tsuchimochi H, Tada Y, Kurachi Y.
    Journal: FEBS Lett; 1997 Jan 27; 402(1):12-6. PubMed ID: 9013848.
    Abstract:
    An inwardly rectifying K+ current, which was heterologously expressed in Xenopus oocytes, was inhibited by isoproterenol, a fadrenergic agonist. Poly(A)+ mRNA isolated from guinea-pig brain was injected into oocytes 2-3 days before experiments. Isoproterenol inhibition of the K+ current was time-and voltage-dependent: the inhibition became faster and more pronounced as the command voltage steps were applied to more negative potentials. This inhibition was prevented by propranolol. Dibutylyl cyclic (dB-c) AMP could mimic the effect of isoproterenol, while injection of the catalytic subunit of cAMP-dependent protein kinase into the oocytes did not affect the K+ current. Inhibitors of the protein kinases, WIPTIDE and H-8, did not prevent the inhibition by dB-cAMP. Furthermore, dB-cGMP also inhibited the K+ current in a similar time- and voltage-dependent manner. We propose that the phosphorylation-independent action of cyclic nucleotides mediates beta-adrenergic inhibition of brain inwardly rectifying K+ channels expressed in Xenopus oocytes.
    [Abstract] [Full Text] [Related] [New Search]