These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Protection against hypoxic-ischemic damage with corticosterone and dexamethasone: inhibition of effect by a glucocorticoid antagonist RU38486.
    Author: Tuor UI, Del Bigio MR.
    Journal: Brain Res; 1996 Dec 16; 743(1-2):258-62. PubMed ID: 9017253.
    Abstract:
    We investigated whether the neuroprotection provided by dexamethasone against neonatal hypoxic-ischemic damage can be inhibited by a glucocorticoid antagonist and whether corticosterone, the endogenous glucocorticoid in the rat, also provides protection. Rats (6 days old) were treated with either vehicle (0.1 ml/10 g), corticosterone (3.5-80 mg/kg, s.c.) or dexamethasone alone or in combination with RU38486 (20-80 mg/kg, s.c.) 15 min prior to dexamethasone (0.1 mg/kg, i.p.). At 7 days of age, cerebral hypoxia-ischemia was produced by right carotid artery ligation under anesthesia and subsequent exposure to 2 h of hypoxia. Damage was quantified from brains perfusion-fixed and processed 2 days later. The reduction in somatic growth, thymus weight and the relatively elevated blood glucose levels at the end of hypoxia-ischemia were inhibited by RU38486. The protective effect of dexamethasone was also prevented by RU38486 (P < 0.001). Similar to pre-treatment with dexamethasone, administration of corticosterone (40-80 mg/kg) markedly reduced the extent of infarction compared to vehicle-treated controls (P < 0.0001). Thus, the endogenous glucocorticoid in the rat also provides protection against hypoxic-ischemic damage. RU38486 inhibits the beneficial effects of dexamethasone demonstrating that the neuroprotection observed with dexamethasone is a glucocorticoid receptor-mediated effect.
    [Abstract] [Full Text] [Related] [New Search]