These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Noxious stimuli do not determine reflex cardiorespiratory effects in anesthetized rabbits.
    Author: Raimondi G, Legramante JM, Iellamo F, Frisardi G, Cassarino S, Peruzzi G.
    Journal: J Appl Physiol (1985); 1996 Dec; 81(6):2421-7. PubMed ID: 9018488.
    Abstract:
    The main purpose of this study is to examine whether the stimulation of an exclusively pain-sensing receptive field (dental pulp) could determine cardiorespiratory effects in animals in which the cortical integration of the peripheral information is abolished by deep anesthesia. In 15 anesthetized (alpha-chloralose and urethan) rabbits, low (3-Hz)- and high-frequency (100-Hz) electrical dental pulp stimulation was performed. Because this stimulation caused dynamic and static reflex contractions of the digastric muscles leading to jaw opening jaw-opening reflex (JOR); an indirect sign of algoceptive fiber activation], experimentally induced direct dynamic and static contractions of the digastric muscle were also performed. The low- and high-frequency stimulation of the dental pulp determined cardiovascular [systolic arterial pressure (SAP): -21.7 +/- 4.6 and 10.8 +/- 4.7 mmHg, respectively] and respiratory [pulmonary ventilation (VE): 145.1 +/- 44.9 and 109.3 +/- 28.4 ml/min, respectively] reflex responses similar to those observed during experimentally induced dynamic (SAP: -17.5 +/- 4.2 mmHg; VE: 228.0 +/- 58.5 ml/min) and static (SAP: 5.8 +/- 1.5 mmHg; VE: 148.0 +/- 75.3 ml/min) muscular contractions. The elimination of digastric muscular contraction (JOR) obtained by muscular paralysis did away with the cardiovascular changes induced by dental pulp stimulation, the effectiveness of which in stimulating dental pulp receptors has been shown by recording trigeminal-evoked potentials in six additional rabbits. The main conclusion was that, in deeply anesthetized animals, an algesic stimulus is unable to determine cardiorespiratory effects, which appear to be exclusively linked to the stimulation of ergoreceptors induced by muscular contraction.
    [Abstract] [Full Text] [Related] [New Search]