These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Postnatal development of the pattern of respiratory and cardiovascular response to systemic hypoxia in the piglet: the roles of adenosine.
    Author: Elnazir B, Marshall JM, Kumar P.
    Journal: J Physiol; 1996 Apr 15; 492 ( Pt 2)(Pt 2):573-85. PubMed ID: 9019551.
    Abstract:
    1. In 3-day-old and 3-week-old spontaneously breathing piglets anaesthetized with Saffan, we have studied ventilatory and cardiovascular responses evoked by 5 min periods of hypoxia (breathing 10 and 6% O2). 2. In 3-day-old piglets both 10 and 6% O2 evoked an increase followed by a secondary fall in ventilation, a gradual tachycardia and a renal vasoconstriction, with an increase in femoral blood flow that was attributable to femoral vasodilatation. Arterial blood pressure rose initially but fell towards control values by the 5th minute of hypoxia. 3. The stable adenosine analogue 2-chloroadenosine (2-CA; 30 mg kg(-1) i.v.) evoked bradycardia and renal vasoconstriction, but had no effect on femoral vasculature. These responses were blocked by the adenosine receptor antagonist 8-phenyltheophylline (8-PT; 8 mg kg(-1) i.v.). 8-PT also abolished the secondary fall in ventilation evoked by 10 and 6% O2 and the renal vasoconstriction evoked by 10% O2, but had no effect on the tachycardia, or on the femoral vascular response. 4. By contrast, in 3-week-old piglets both 10 and 6% O2 evoked a sustained increase in ventilation, tachycardia and a rise in arterial pressure with renal vasoconstriction, but no change in renal blood flow and substantial femoral vasodilatation with an increase in femoral blood flow. 2-CA evoked bradycardia and renal vasoconstriction, as in 3-day-old piglets, but also evoked pronounced femoral vasodilatation. 8-PT blocked these responses and the hypoxia-induced femoral vasodilatation, but had no significant effect on other components of the hypoxia-induced response. 5. We propose that there is postnatal development of the ventilatory and cardiovascular responses evoked by systemic hypoxia and of the role of locally released adenosine in these responses: at 3 days, adenosine released within the central nervous system and within the kidney is a major contributor to the secondary fall in ventilation and renal vasoconstriction respectively, whereas at 3 weeks, adenosine makes little contribution to the ventilatory response, or renal vasoconstriction, but is largely responsible for hypoxia-induced vaso-dilatation in skeletal muscle.
    [Abstract] [Full Text] [Related] [New Search]