These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Immunomodulating effect of fosfomycin on gut-derived sepsis caused by Pseudomonas aeruginosa in mice. Author: Matsumoto T, Tateda K, Miyazaki S, Furuya N, Ohno A, Ishii Y, Hirakata Y, Yamaguchi K. Journal: Antimicrob Agents Chemother; 1997 Feb; 41(2):308-13. PubMed ID: 9021184. Abstract: We evaluated the protective effect of fosfomycin (FOM) and an enantiomer of fosfomycin [FOM (+); an isomer of FOM with no bactericidal activity] on murine gut-derived sepsis caused by Pseudomonas aeruginosa. Endogenous bacteremia was induced by administering cyclophosphamide (CY) and ampicillin to specific-pathogen-free mice fed P. aeruginosa. Treatment of mice with FOM at 250 mg/kg of body weight per day twice a day after the second CY administration significantly increased the survival rate compared to that for control mice treated with saline. Treatment with FOM (+) at 20 and 100 mg/kg also significantly increased the survival rate (from 30% for control mice to 80% for treated mice). The bacterial counts in the liver and blood were both significantly lower in FOM(+)-treated mice in comparison with those in liver and blood of saline-treated control mice. FOM(+) administration affected neither the bacterial colonization in the intestinal tract nor the leukocyte counts in the peripheral blood of the mice. After intravascular inoculation of P. aeruginosa, treatment of mice with FOM (+) did not enhance bacterial clearance from the blood of mice pretreated or not enhance bacterial clearance from the blood of mice pretreated or not pretreated with CY, FOM(+) significantly suppressed tumor necrosis factor alpha, interleukin-1 beta, and interleukin-6 levels in the serum of mice after gut-derived sepsis. These results indicate that both FOM and FOM(+) have protective effects against P. aeruginosa bacteremia, despite a lack of specific activity of FOM(+), and suggest that FOM may possess immunomodulating activity and that it induces a protective effect. The protective mechanism is speculated to be that FOM modulates the vivo production of inflammatory cytokines.[Abstract] [Full Text] [Related] [New Search]