These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of sodium nitroprusside in the rat cortical collecting duct are independent of the NO pathway. Author: Hirsch JR, Cermak R, Forssmann WG, Kleta R, Kruhøffer M, Kuhn M, Schafer JA, Sun D, Schlatter E. Journal: Kidney Int; 1997 Feb; 51(2):473-6. PubMed ID: 9027724. Abstract: Recently we described K+ channels in the basolateral membrane of principal cells of rat cortical collecting duct (CCD) which are regulated by a cGMP-dependent protein kinase (Pflugers Arch 429:338-344, 1995). We examined the effects of the NO-liberator sodium nitroprusside (SNP) on single channel activity and membrane voltage (Vm) in principal cells of rat CCD, and on transepithelial voltage, lumen-to-bath Na+ fluxes, and osmotic water permeability in isolated perfused rat CCD tubules. While in patch clamp experiments SNP (10 microM) hyperpolarized principal cells from -54 +/- 10 mV to -71 +/- 5 mV (N = 5) and increased the activity of the described K+ channels from 0.05 +/- 0.03 to 0.45 +/- 0.14 (N = 5) in cell-attached and from 0.04 +/- 0.02 to 0.25 +/- 0.05 (N = 4) in excised patch clamp experiments, it had no effect on basal or AVP-dependent transepithelial voltage, Na+ fluxes, or the osmotic water permeability. In addition, neither 50 microM SIN-1, another liberator of NO, nor 1 mM L-NAME, an inhibitor of the NO-synthase, changed Vm significantly. Furthermore, in cGMP-assays SNP failed to increase intracellular cGMP in CCD segments. Thus, we conclude that in the rat CCD transport is not regulated via the NO-pathway and that SNP acts as an cGMP independent activator of K+ channels in the basolateral membrane of these cells.[Abstract] [Full Text] [Related] [New Search]