These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Formation of DNA repair intermediates and incision by the ATP-dependent UvrB-UvrC endonuclease.
    Author: Zou Y, Walker R, Bassett H, Geacintov NE, Van Houten B.
    Journal: J Biol Chem; 1997 Feb 21; 272(8):4820-7. PubMed ID: 9030538.
    Abstract:
    The Escherichia coli UvrB and UvrC proteins play key roles in DNA damage processing and incisions during nucleotide excision repair. To study the DNA structural requirements and protein-DNA intermediates formed during these processes, benzo[a]pyrene diol epoxide-damaged and structure-specific 50-base pair substrates were constructed. DNA fragments containing a preexisting 3' incision were rapidly and efficiently incised 5' to the adduct. Gel mobility shift assays indicated that this substrate supported UvrA dissociation from the UvrB-DNA complex, which led to efficient incision. Experiments with a DNA fragment containing an internal noncomplementary 11-base region surrounding the benzo[a]pyrene diol epoxide adduct indicated that UvrABC nuclease does not require fully duplexed DNA for binding and incision. In the absence of UvrA, UvrB (UvrC) bound to an 11-base noncomplementary region containing a 3' nick (Y substrate), forming a stable protein-DNA complex (Kd approximately 5-10 nM). Formation of this complex was absolutely dependent upon UvrC. Addition to this complex of ATP, but not adenosine 5'-(beta,gamma-iminotriphosphate) or adenosine 5'-(beta, gamma-methylene)triphosphate, caused incision three or four nucleotides 5' to the double strand-single strand junction. The ATPase activity of native UvrB is activated upon interaction with UvrC and enhanced further by the addition of Y substrate. Incision of this Y structure occurs even without DNA damage. Thus the UvrBC complex is a structure-specific, ATP-dependent endonuclease.
    [Abstract] [Full Text] [Related] [New Search]