These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The human POLD1 gene. Identification of an upstream activator sequence, activation by Sp1 and Sp3, and cell cycle regulation.
    Author: Zhao L, Chang LS.
    Journal: J Biol Chem; 1997 Feb 21; 272(8):4869-82. PubMed ID: 9030545.
    Abstract:
    The promoter of the human POLD1 gene encoding the catalytic subunit of DNA polymerase delta is G/C-rich and does not contain a TATA box. Transient transfection analysis in HeLa cells employing POLD1-luciferase chimeric plasmids revealed a core promoter region extending 328 base pairs (bp) from the major transcription initiation site. Multiple elements in this region including two 11-bp direct repeats located between nucleotide positions -92 and -22, play an important role in POLD1 promoter activity. Deletion or linker-replacement mutations of the repeats drastically reduced the promoter activity. A 70-bp DNA fragment containing the two repeats could stimulate the expression of the POLD1 or a heterologous promoter in an orientation-independent manner. DNase I footprinting and band-shift assays showed that HeLa nuclear extracts contained proteins specifically binding to the repeat sequences. Southwestern blot and UV cross-linking analyses identified Sp1 and two 85-kDa proteins that bound to the repeats. Additionally, screening of HeLa cDNA expression libraries for the sequence-specific DNA-binding protein using the 11-bp repeat sequences as the probe, identified a cDNA that corresponds to Sp3, a member of the Sp1 family. Cotransfection studies in Drosophila SL2 cells showed that both Sp1 and Sp3, but not Sp2, could activate the POLD1 promoter through the repeat sequences. The POLD1 promoter activity was induced about 4-fold at the late G1/S boundary in serum-stimulated cells. The 11-bp repeats together with an E2F-like sequence, located adjacent to the major transcription initiation site, were important for the stimulation. Taken together, this study provides a direct evidence for transcriptional regulation of the human POLD1 gene.
    [Abstract] [Full Text] [Related] [New Search]