These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of mutations in vesicle-associated membrane protein (VAMP) on the assembly of multimeric protein complexes. Author: Hao JC, Salem N, Peng XR, Kelly RB, Bennett MK. Journal: J Neurosci; 1997 Mar 01; 17(5):1596-603. PubMed ID: 9030619. Abstract: The assembly of multimeric protein complexes that include vesicle-associated membrane protein 2 (VAMP-2) and the plasma membrane proteins syntaxin 1A and synaptosome-associated protein of 25 kDa (SNAP-25) are thought to reflect the biochemical correlates of synaptic vesicle targeting, priming, or fusion. Using a variety of protein-protein interaction assays and a series of deletion and point mutations, we have investigated the domains of VAMP-2 required for the formation of binary complexes with either syntaxin 1A or SNAP-25 and ternary complexes with both syntaxin 1A and SNAP-25. Deletions within the central conserved domain of VAMP-2 eliminated binding to either syntaxin 1A or both syntaxin 1A and SNAP-25. Although all of the deletion mutants were able to form ternary complexes, only some of these complexes were resistant to denaturation in sodium dodecyl sulfate. These results demonstrate that cooperative interactions result in the formation of at least two biochemically distinct classes of ternary complex. Two point mutations previously shown to have effects on the intracellular trafficking of VAMP-2 (M46A, reduced endocytosis and sorting to synaptic vesicles; N49A, enhanced sorting to synaptic vesicles) lie within a domain required for both syntaxin 1A and SNAP-25 binding. Syntaxin 1A and SNAP-25 binding was reduced by the M46A mutation and enhanced by the N49A mutation, suggesting that a correlation exists between the membrane-trafficking phenotype of the two VAMP-2 point mutants and their competence to form complexes with either syntaxin 1A or SNAP-25.[Abstract] [Full Text] [Related] [New Search]