These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of pentylenetetrazol on the expression of tyrosine hydroxylase mRNA and norepinephrine and dopamine transporter mRNA.
    Author: Szot P, White SS, Veith RC.
    Journal: Brain Res Mol Brain Res; 1997 Feb; 44(1):46-54. PubMed ID: 9030697.
    Abstract:
    Seizure activity has been shown to have differential effects on the terminal content of the monoamines, norepinephrine (NE) and dopamine (DA). Induction of seizure activity reduces the terminal content of NE, while DA levels remain unchanged or slightly elevated. This study examined the effect of the chemoconvulsant pentylenetetrazol (PTZ) on the mRNA expression of regulatory proteins which maintain the terminal content of NE and DA (i.e., synthesis and re-uptake). The areas examined were the noradrenergic neurons of the locus coeruleus (LC) and dopaminergic neurons of the substantia nigra pars compacta/ventral tegmentum area (SNpc/VTA) in the rat. In the LC, PTZ increased mRNA expression of the immediate early gene, c-fos, and mRNA expression of the synthesizing enzyme, tyrosine hydroxylase (TH), and the re-uptake protein, norepinephrine transporter (NET). This effect on TH and NET was observed only 1 day after the administration of PTZ. In contrast, PTZ did not alter the expression of c-fos mRNA in the SNpc/VTA, but reduced the expression of the dopamine transporter (DAT) mRNA. This effect was observed only 1 day after the administration of PTZ. TH mRNA expression in dopaminergic neurons was elevated initially in a manner similar to that observed in the LC. However, the effect of PTZ on TH mRNA expression in dopaminergic neurons was more prolonged (still elevated 3 days later). These results indicate that the chemoconvulsant PTZ has differential effects on the mRNA expression of regulatory systems (TH and neurotransporter proteins) in noradrenergic and dopaminergic neurons.
    [Abstract] [Full Text] [Related] [New Search]