These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inorganic fluoride. Divergent effects on human proximal tubular cell viability. Author: Zager RA, Iwata M. Journal: Am J Pathol; 1997 Feb; 150(2):735-45. PubMed ID: 9033286. Abstract: Fluoride (F) is a widely distributed nephrotoxin with exposure potentially resulting from environmental pollution and from fluorinated anesthetic use (eg, isoflurane). This study sought to characterize some of the subcellular determinants of fluoride cytotoxicity and to determine whether subtoxic F exposure affects tubular cell vulnerability to superimposed ATP depletion and nephrotoxic attack. Human proximal tubular cells (HK-2) were cultured with differing amounts of NaF (0 to 20 mmol/L, overlapping with clinically relevant intrarenal/urinary levels after fluorinated anesthetic use). After completing 24-hour exposures, cell injury was determined (vital dye uptake). Fluoride effects on cell deacylation ([3]H-C20:4 release) and PLA2 activity were also assessed. To determine whether subtoxic F exposure alters tubular cell susceptibility to superimposed injury, cells were exposed to subtoxic NaF doses for 0 to 24 hours and then challenged with simulated ischemia (ATP depletion plus Ca2+ overload) or a clinically relevant nephrotoxic insult (myoglobin exposure). NaF induced dose-dependent cytotoxicity (up to approximately 90% vital dye uptake and increased [3H]C20:4 release). Extracellular Ca2+ chelation (EGTA) and PLA2 inhibitor therapy (aristolochic acid, dibucaine, or mepacrine) each conferred significant protective effects. When subtoxic NaF doses were applied, partial cytosolic PLA2 depletion rapidly developed (approximately 85% within 3 hours, determined on cell extracts). These partially PLA2-depleted cells were markedly resistant to ATP depletion/Ca2+ ionophore injury and to myoglobin-induced attack (approximately 50% decrease in cell death). We conclude that 1) F induces dose-dependent cytotoxicity in cultured human proximal tubular cells, 2) this occurs, in part, via Ca(2+)- and PLA2-dependent mechanism(s), 3) partial cytosolic PLA2 depletion subsequently results, and 4) subtoxic fluoride exposure can acutely increase cell resistance to further attack. Reductions in cytosolic PLA2 activity could potentially contribute to this result.[Abstract] [Full Text] [Related] [New Search]