These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of high salt intake in mutant mice lacking bradykinin-B2 receptors. Author: Alfie ME, Sigmon DH, Pomposiello SI, Carretero OA. Journal: Hypertension; 1997 Jan; 29(1 Pt 2):483-7. PubMed ID: 9039146. Abstract: Renal kinins release prostaglandins and nitric oxide via the B2 receptor, promoting diuresis and natriuresis; hence, they may also contribute significantly to blood pressure regulation. We hypothesized that mutant mice lacking the gene encoding for the bradykinin-B2 receptor (B2-KO) become hypertensive when placed on a long-term high-salt diet. To test this, B2-KO and control mice were placed on either a normal (0.2%) or high-Na+ diet (3.15% in food plus 1% saline as drinking water) for 8 weeks. Systolic blood pressure was determined during weeks 6 and 8 by a computerized tail-cuff system. At the end of the 8-week period, mice were anesthetized for determination of mean blood pressure, renal blood flow, and renal vascular resistance. In B2-KO mice maintained on high Na+, systolic blood pressure was 15 mm Hg higher than in knockout animals on normal Na+ (P < .01). In contrast, there was no difference in blood pressure in control mice fed either a normal or a high-Na+ diet. Consistent with the systolic blood pressure data, direct mean arterial pressure revealed that B2-KO mice on high Na+ were hypertensive (115 +/- 6 in B2-KO on high-Na+ diet versus 79 +/- 2.8 in B2-KO on normal Na+, P < .0001); renal blood flow was reduced by 20% (P < .05) and renal vascular resistance was doubled (P < .0001) compared with B2-KO mice on normal Na+. In contrast, control mice on high Na+ were normotensive and tended to have increased renal blood flow and decreased renal vascular resistance compared with control mice on a normal Na+ diet. These findings indicate that kinins play an important role in preventing salt-sensitive hypertension; this may be achieved by maintaining renal blood flow under conditions of high salt intake.[Abstract] [Full Text] [Related] [New Search]