These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Testin is tightly associated with testicular cell membrane upon its secretion by sertoli cells whose steady-state mRNA level in the testis correlates with the turnover and integrity of inter-testicular cell junctions.
    Author: Grima J, Zhu L, Cheng CY.
    Journal: J Biol Chem; 1997 Mar 07; 272(10):6499-509. PubMed ID: 9045675.
    Abstract:
    Testin, a Sertoli cell secretory protein whose mRNA is predominantly expressed in the testis, was shown to become tightly associated with Sertoli cell membrane upon its secretion whose solubilization requires the use of a detergent such as SDS. In the in vitro studies using Sertoli cells cultured at high cell density, where specialized junctions were being formed, the concentration of "soluble" testin in the spent media was greatly reduced versus monolayer cultures at low cell density, where specialized junctions were absent. Conversely, the concentration of "membrane-bound" testin from detergent-solubilized Sertoli cell membrane extract was positively correlated to the existence of specialized junctions in these cultures. In normal rat testes, the level of radioimmunoassayable soluble testin in the cytosol was low. However, when the inter-testicular cell junctions were disrupted either by a drug treatment such as lonidamine in vivo or by a physical treatment in vitro such as exposing Sertoli-germ cell co-cultures where specialized junctions were formed to a hypotonic treatment, a drastic surge in the testin gene expression was noted. Thus, testin can become tightly associated with Sertoli cell membrane upon its secretion when intercellular junctions are formed. It is also a marker to monitor the integrity of inter-testicular cell junctions.
    [Abstract] [Full Text] [Related] [New Search]