These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Radiation-induced red cell damage: role of reactive oxygen species. Author: Anand AJ, Dzik WH, Imam A, Sadrzadeh SM. Journal: Transfusion; 1997 Feb; 37(2):160-5. PubMed ID: 9051090. Abstract: BACKGROUND: Cellular blood components are irradiated to prevent graft-versus-host disease in transfusion recipients at risk for this syndrome. Because gamma radiation can result in the production of reactive oxygen species, the role of reactive oxygen species was investigated in radiation-induced red cell damage. STUDY DESIGN AND METHODS: Whole blood from normal donors was exposed to various doses of t-butyl hydroperoxide (0-1 mM) and/or to gamma-radiation (0-50 Gy). Oxidative damage was assessed by the extent of lipid peroxidation (measured by thiobarbituric acid-reactive substances [TBARS]) and hemoglobin oxidation. Fresh blood was divided into three parts-one initially irradiated and stored, another stored with portions irradiated weekly, and a third stored without irradiation. TBARS and hemoglobin oxidation were measured weekly. RESULTS: As expected, t-butyl hydroperoxide induced TBARS formation and hemoglobin oxidation in a dose-dependent fashion. The gamma-radiation not only increased hemoglobin oxidation and TBARS formation, but also enhanced the t-butyl hydroperoxide effect on red cells. Red cell storage increased TBARS generation and hemoglobin oxidation in a time-dependent fashion. When radiation was administered either initially or after weekly storage, TBARS production and hemoglobin oxidation were increased over that measured in unirradiated paired controls. CONCLUSION: Gamma radiation at clinically used doses increases lipid peroxidation and hemoglobin oxidation in human red cells. The effect of gamma-radiation is accentuated by blood storage and induces damage independent of time of storage.[Abstract] [Full Text] [Related] [New Search]