These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The biologic action of single-chain choriogonadotropin is not dependent on the individual disulfide bonds of the beta subunit. Author: Ben-Menahem D, Kudo M, Pixley MR, Sato A, Suganuma N, Perlas E, Hsueh AJ, Boime I. Journal: J Biol Chem; 1997 Mar 14; 272(11):6827-30. PubMed ID: 9054363. Abstract: Disrupting disulfide loops in the human chorionic gonadotropin beta subunit (CGbeta) inhibits combination with the alpha subunit. Because the bioactivity requires a heterodimer, studies on the role of disulfide bonds on receptor binding/signal transduction have previously been precluded. To address this problem, we bypassed the assembly step and genetically fused CGbeta subunits bearing paired cysteine mutations to a wild-type alpha (WTalpha) subunit. The changes altered secretion of the single-chain mutants which parallel that seen for the CGbeta monomeric subunit. Despite conformational changes in CG disulfide bond mutants (assayed by gel electrophoresis and conformationally sensitive monoclonal antibodies), the variants bind to the lutropin/CG receptor and activated adenylate cyclase in vitro. The data show that the structural requirements for secretion and bioactivity are not the same. The results also suggest that the extensive native subunit interactions determined by the cystine bonds are not required for signal transduction. Moreover, these studies demonstrate that the single-chain model is an effective approach to structure-activity relationships of residues and structural domains associated with assembly of multisubunit ligands.[Abstract] [Full Text] [Related] [New Search]