These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The protein-tyrosine phosphatase SHP-2 binds platelet/endothelial cell adhesion molecule-1 (PECAM-1) and forms a distinct signaling complex during platelet aggregation. Evidence for a mechanistic link between PECAM-1- and integrin-mediated cellular signaling. Author: Jackson DE, Ward CM, Wang R, Newman PJ. Journal: J Biol Chem; 1997 Mar 14; 272(11):6986-93. PubMed ID: 9054388. Abstract: Platelet/endothelial cell adhesion molecule-1 (PECAM-1) is a homophilic adhesion receptor that mediates leukocyte/endothelial cell interactions that take place during transendothelial migration. Recent reports have shown that the binding of certain anti-PECAM-1 antibodies results in up-regulation of integrin function on the surface of leukocytes and platelets, suggesting that PECAM-1 may be capable of transmitting information into the cell following its engagement. PECAM-1 isolated from resting or activated but nonaggregated platelets was phosphorylated predominantly on serine residues; however, PECAM-1 derived from activated, aggregated platelets was strongly phosphorylated on tyrosine. Synthetic tyrosine-phosphorylated peptides derived from five different regions within the cytoplasmic domain of PECAM-1 were screened for their ability to associate with cytoplasmic signaling molecules. The protein-tyrosine phosphatase SHP-2 was found to interact specifically with two different PECAM-1 phosphopeptides containing highly conserved phosphatase-binding motifs on PECAM-1 with the sequences VQpY663TEV and TVpY686SEV. More important, SHP-2 bound not only PECAM-1 phosphopeptides, but also became associated with full-length cellular PECAM-1 during the platelet aggregation process, and this interaction was mediated by the amino-terminal Src homology 2 domains of the phosphatase. Since SHP-2 normally serves as a positive regulator of signal transduction, its association with activated PECAM-1 suggests a number of potential mechanisms by which PECAM-1 engagement might be coupled to integrin activation in vascular cells.[Abstract] [Full Text] [Related] [New Search]