These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A study of Escherichia coli adenylosuccinate synthetase association states and the interface residues of the homodimer. Author: Wang W, Gorrell A, Honzatko RB, Fromm HJ. Journal: J Biol Chem; 1997 Mar 14; 272(11):7078-84. PubMed ID: 9054400. Abstract: The state of aggregation of adenylosuccinate synthetase from Escherichia coli is a point of controversy, with crystal structures indicating a dimer and some solution studies indicating a monomer. Crystal structures implicate Arg143 and Asp231 in stabilizing the dimer, with Arg143 interacting directly with bound IMP of the 2-fold related subunit. Residue Arg143 was changed to Lys and Leu, and residue Asp231 was changed to Ala. Matrix-assisted laser desorption ionization mass spectroscopy and analytical ultracentrifugation of the wild-type and the mutant enzymes indicate a mixture of monomers and dimers, with a majority of the enzyme in the monomeric state. In the presence of active site ligands, the wild-type enzyme exists almost exclusively as a dimer, whereas the mutant enzymes show only slightly decreased dissociation constants for the dimerization. Initial rate kinetic studies of the wild-type and mutant enzymes show similar kcat and Km values for aspartate. However, increases in the Km values of GTP and IMP are observed for the mutant. Changes in dissociation constants for IMP are comparable with changes in Km values. Our results suggest that IMP binding induces enzyme dimerization and that two residues in the interface region, Arg143 and Asp231, play significant roles in IMP and GTP binding.[Abstract] [Full Text] [Related] [New Search]