These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Different mechanisms are involved in intracellular calcium increase by insulin-like growth factors 1 and 2 in articular chondrocytes: voltage-gated calcium channels, and/or phospholipase C coupled to a pertussis-sensitive G-protein.
    Author: Poiraudeau S, Lieberherr M, Kergosie N, Corvol MT.
    Journal: J Cell Biochem; 1997 Mar 01; 64(3):414-22. PubMed ID: 9057099.
    Abstract:
    This study describes the mechanisms involved in the IGF-1 and IGF-2-induced increases in intracellular calcium concentration [Ca2+]i in cultured chondrocytes and the involvement of type 1 IGF receptors. It shows that IGF-1, IGF-2, and insulin increased the cytosolic free calcium concentration [Ca2+]i in a dose-dependent manner, with a plateau from 25 to 100 ng/ml for both IGF-1 and IGF-2 and from 1 to 2 micrograms/ml for insulin. The effect of IGF-1 was twice as great as the one of IGF-2, and the effect of insulin was 40% lower than IGF-1 effect. Two different mechanisms are involved in the intracellular [Ca2+]i increase. 1) IGF-1 and insulin but not IGF-2 involved a Ca2+ influx through voltage-gated calcium channels: pretreatment of the cells by EGTA and verapamil diminished the IGF-1 or insulin-induced [Ca2+]i but did not block the effect of IGF-2. 2) IGF-1, IGF-2, and insulin also induced a Ca2+ mobilization from the endoplasmic reticulum: phospholipase C (PLC) inhibitors, neomycin, or U-73122 partially blocked the intracellular [Ca2+]i increase induced by IGF-1 and insulin and totally inhibited the effect of IGF-2. This Ca2+ mobilization was pertussis toxin (PTX) dependent, suggesting an activation of a PLC coupled to a PTX-sensitive G-protein. Lastly, preincubation of the cells with IGF1 receptor antibodies diminished the IGF-1-induced Ca2+ spike and totally abolished the Ca2+ influx, but did not modify the effect of IGF-2. These results suggest that IGF-1 action on Ca2+ influx involves the IGF1 receptor, while part of IGF-1 and all of IGF-2 Ca2+ mobilization do not implicate this receptor.
    [Abstract] [Full Text] [Related] [New Search]