These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Latent transforming growth factor-beta binding protein domains involved in activation and transglutaminase-dependent cross-linking of latent transforming growth factor-beta. Author: Nunes I, Gleizes PE, Metz CN, Rifkin DB. Journal: J Cell Biol; 1997 Mar 10; 136(5):1151-63. PubMed ID: 9060478. Abstract: Transforming growth factor-beta (TGF-beta) is secreted by many cell types as part of a large latent complex composed of three subunits: TGF-beta, the TGF-beta propeptide, and the latent TGF-beta binding protein (LTBP). To interact with its cell surface receptors, TGF-beta must be released from the latent complex by disrupting noncovalent interactions between mature TGF-beta and its propeptide. Previously, we identified LTBP-1 and transglutaminase, a cross-linking enzyme, as reactants involved in the formation of TGF-beta. In this study, we demonstrate that LTBP-1 and large latent complex are substrates for transglutaminase. Furthermore, we show that the covalent association between LTBP-1 and the extracellular matrix is transglutaminase dependent, as little LTBP-1 is recovered from matrix digests prepared from cultures treated with transglutaminase inhibitors. Three polyclonal antisera to glutathione S-transferase fusion proteins containing amino, middle, or carboxyl regions of LTBP-1S were used to identify domains of LTBP-1 involved in cross-linking and formation of TGF-beta by transglutaminase. Antibodies to the amino and carboxyl regions of LTBP-1S abrogate TGF-beta generation by vascular cell cocultures or macrophages. However, only antibodies to the amino-terminal region of LTBP-1 block transglutaminase-dependent cross-linking of large latent complex or LTBP-1. To further identify transglutaminase-reactive domains within the amino-terminal region of LTBP-1S, mutants of LTBP-1S with deletions of either the amino-terminal 293 (deltaN293) or 441 (deltaN441) amino acids were expressed transiently in CHO cells. Analysis of the LTBP-1S content in matrices of transfected CHO cultures revealed that deltaN293 LTBP-1S was matrix associated via a transglutaminase-dependent reaction, whereas deltaN441 LTBP-1S was not. This suggests that residues 294-441 are critical to the transglutaminase reactivity of LTBP-1S.[Abstract] [Full Text] [Related] [New Search]