These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Comparison of echocardiographic acoustic quantification system and radionuclide ventriculography for estimating left ventricular ejection fraction: validation in patients without regional wall motion abnormalities. Author: Chandra S, Bahl VK, Reddy SC, Bhargava B, Malhotra A, Wasir HS. Journal: Am Heart J; 1997 Mar; 133(3):359-63. PubMed ID: 9060807. Abstract: Echocardiographic automated border detection of blood-endocardium interface is made on the basis of the principle of acoustic quantification. The automated border system is capable of providing on-line left ventricular (LV) cavity area and function. Recently, ABD algorithms have been devised to estimate LV volume on line from a long-axis image, calculated by established area-length method or Simpson's formula. To test the clinical validity of this newly developed echocardiographic method, LV volumes and ejection fraction measured by real-time acoustic quantification were compared with radionuclide ejection fraction in 24 subjects on the same day. Patients were included in the study if > or = 75% of their endocardium was visualized with conventional two-dimensional echocardiography. Sixteen (66%) of 24 patients had a technically adequate conventional echocardiogram with a broad range of ventricular dimensions and systolic function. None of the study patients had regional wall motion abnormalities. Echocardiographic measurements were obtained from the LV apical four-chamber, long-axis view. Ejection fraction, determined by the acoustic quantification and by radionuclide ventriculography, showed a strong linear relation (r = 0.92, standard error of the estimate = 4.4, p < 0.05). However, acoustic quantification overestimated the radionuclide ejection fraction with rather wide limits of agreement (3.8% +/- 16.4%; bias +/- 2 SD). Thus echocardiographic automated border detection technique is a reasonably accurate method for on-line assessment of LV function.[Abstract] [Full Text] [Related] [New Search]