These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: C-terminal mutation of G protein beta subunit affects differentially extracellular signal-regulated kinase and c-Jun N-terminal kinase pathways in human embryonal kidney 293 cells.
    Author: Yamauchi J, Kaziro Y, Itoh H.
    Journal: J Biol Chem; 1997 Mar 21; 272(12):7602-7. PubMed ID: 9065414.
    Abstract:
    G protein beta and gamma subunits (Gbeta and Ggamma) form a complex that is involved in various signaling pathways. We reported that the C-terminal 10 amino acids of Gbeta are required for association with Ggamma (Yamauchi, J., Kaziro, Y., and Itoh, H. (1995) Biochem. Biophys. Res. Commun., 214, 694-700). To evaluate further the significance of the C-terminal region of Gbeta in the formation of a Gbetagamma complex and its signal transduction, we constructed several C-terminal mutants and expressed them in human embryonal kidney 293 cells. The mutant lacking the C-terminal 2 amino acids (DeltaC2) failed to associate with Ggamma, whereas deletion of the C-terminal amino acid (DeltaC1), replacement of Trp at -2 position by Ala (W339A), and addition of six histidines ((His)6) at the C terminus did not affect the association with Ggamma. We also studied the effect of these mutations on the activation of mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) and c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK). Co-expression of the DeltaC2 or (His)6 mutant with Ggamma did not activate MAPK/ERK at all, whereas the DeltaC1 or W339A mutant showed the MAPK/ERK activation. The JNK/SAPK activity was stimulated by the W339A, DeltaC2, or (His)6 mutant, but not by the DeltaC1 mutant. These results suggest that the C-terminal region of Gbeta participates differentially in the signaling for MAPK/ERK and JNK/SAPK activations in mammalian cells.
    [Abstract] [Full Text] [Related] [New Search]