These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Formation of peroxide- and globin-derived radicals from the reaction of methaemoglobin and metmyoglobin with t-butyl hydroperoxide: an ESR spin-trapping investigation. Author: Van der Zee J. Journal: Biochem J; 1997 Mar 01; 322 ( Pt 2)(Pt 2):633-9. PubMed ID: 9065787. Abstract: The reaction of human methaemoglobin and horse metmyoglobin with t-butyl hydroperoxide (t-BuOOH) was investigated with the ESR spin-trapping technique. With the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) the formation of peroxyl, alkoxyl and methyl radicals derived from t-BuOOH could be detected. The relative contributions of these radicals were determined at various DMPO concentrations by computer simulation. From these data it could be concluded that the alkoxyl radical was the initial radical produced, which indicates that the hydroperoxide is cleaved homolytically. Further investigations, with the nitroso spin trap 2-methyl-2-nitrosopropane (MNP), showed the formation of globin-centred radicals. Non-specific proteolysis of the MNP adducts revealed isotropic three-line spectra, which means that the radical adducts were centred on a tertiary carbon with no bonds to a hydrogen or nitrogen. Comparison with MNP adducts of several amino acids indicated that in methaemoglobin the radical adduct was most probably located on a valine residue. With metmyoglobin the same adduct was obtained, whereas an additional adduct could be assigned to a tyrosyl radical. These protein radicals most probably resulted from hydrogen abstraction by the metal-oxo species, formed by heterolytic cleavage of the hydroperoxide. These results therefore show that homolytic cleavage of the hydroperoxide leads to the formation of peroxide-derived radicals, whereas concurrent heterolytic cleavage results in protein-derived radicals.[Abstract] [Full Text] [Related] [New Search]