These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Changing course of growing axons in the optic chiasm of the mouse. Author: Colello SJ, Coleman LA. Journal: J Comp Neurol; 1997 Mar 24; 379(4):495-514. PubMed ID: 9067839. Abstract: The distribution of retinofugal fibres has been studied by electron microscopy throughout the extent of the developing mouse optic nerve and chiasm at embryonic day (E) 16, in order to determine the course of fibre growth. Growth cones and mature axons, which are randomly distributed in bundles in the extracranial optic nerve, segregate in the juxtachiasmatic optic nerve. Here, growth cones accumulate in subpial regions amongst the endfeet of radial glia, whereas axons lie in the depths of the nerve. Surprisingly, however, growth cones move away from this region toward the ventricular zone in the lateral and midline parts of the chiasm, only to return to subpial regions once more before entering the optic tract, where fibres are again in an age-related order. Superficially, mature axons mingle with growth cones in the chiasm and near the beginning of the optic tract, suggesting that the age-related order begins to be reestablished before growth cones enter the tract. Deep and superficial regions of the pathway were examined in different planes of section. Specialised membrane relationships between retinofugal fibres and radial glial cells were also studied in deep and superficial regions of the lateral part of the chiasm. In addition, the distribution of retinofugal fibre bundles in the adult mouse was looked at by using light microscopy. The changing fibre positions noted in the embryo are maintained in the adult.[Abstract] [Full Text] [Related] [New Search]