These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Utility of intravascular ultrasound in peripheral interventions.
    Author: White RA, Donayre CE, Kopchok GE, Walot I, Mehringer CM.
    Journal: Tex Heart Inst J; 1997; 24(1):28-34. PubMed ID: 9068136.
    Abstract:
    Endovascular imaging techniques encompass a variety of methods, including angiography, computed tomography, magnetic resonance imaging, angioscopy, and intravascular ultrasound. Each method provides unique information regarding the continuity of vascular structures and the morphology and distribution of lesions. Although arteriography has been the "gold standard" for imaging arterial anatomy, recent data have confirmed that even sophisticated arteriographic imaging substantially underestimates the degree of residual lesions, and that future observations and end-points for treatment will most likely be determined by data accumulated by computed tomography, magnetic resonance imaging, angioscopy, and intravascular ultrasound. Successful therapeutic applications of endovascular devices have developed because of improved patient selection using computed tomography, spiral computed tomography, magnetic resonance imaging, and computerized high-resolution angiography. Procedural success has been enhanced by improved mobile cinefluoroscopy, angioscopy, intraluminal ultrasound monitoring of angioplasty procedures, and the use of intravascular ultrasound for stent and stent-graft sizing and deployment. Newly developed methods and low-profile delivery systems enabling deployment and fixation of vascular prostheses by an endoluminal approach have heightened the interest of many interventionalists, particularly surgeons, in the use of endovascular surgical techniques. The evolution of this method promises to add a new dimension to the treatment of vascular lesions and relies heavily on the incorporation of miniaturized imaging systems, such as intravascular ultrasound, as a means to provide precise placement of devices.
    [Abstract] [Full Text] [Related] [New Search]