These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Comparative cytotoxicity of monocrotaline and its metabolites in cultured pulmonary artery endothelial cells.
    Author: Taylor DW, Wilson DW, Lamé MW, Dunston SD, Jones AD, Segall HJ.
    Journal: Toxicol Appl Pharmacol; 1997 Mar; 143(1):196-204. PubMed ID: 9073608.
    Abstract:
    Metabolites of the pyrrolizidine alkaloid monocrotaline cause progressive development of pulmonary hypertension in rats. The putative reactive intermediate monocrotaline pyrrole (MCTP) has been shown to cause cytotoxicity, hypertrophy, decreased proliferation, and altered synthetic capability in cultured pulmonary endothelial cells. We compared effects of monocrotaline (MCT) at 60 micrograms/ml (0.185 mM) with previously identified metabolites, MCTP 10 micrograms/ml (0.031 mM) and glutathione-conjugated dihydropyrrolizine (GSH-DHP) 60 micrograms/ml (0.135 mM), in cultured bovine pulmonary artery endothelial cells (BPAECs). To determine whether endothelial metabolism might contribute to the mechanism of this toxicity, we used markers of cytotoxicity (LDH release), synthetic activity (PGI2 synthesis), hypertrophy (planimetry), cell density (cell count/area), and Evans blue albumin (EBA) transudation as a marker for loss of fluid barrier integrity. We found changes in all endothelial markers with MCTP only. MCTP caused increased LDH release by 48 hr, augmented PGI2 synthesis by 96 hr, and resulted in hypertrophy and decreased cell density by 48 hr that persisted at least 21 days. There was increased EBA transudation at 24 hr posttreatment. We concluded that, based on markers of endothelial damage, BPAECs showed no apparent ability to metabolize MCT to a reactive intermediate nor to further metabolize GSH-DHP to a toxic species. We also concluded that MCTP can cause a direct effect on fluid barrier integrity of endothelial cell monolayers in the absence of inflammation.
    [Abstract] [Full Text] [Related] [New Search]