These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Association between alphabetaTCR+CD4-CD8- T-cell deficiency and IDDM in NOD/Lt mice. Author: Baxter AG, Kinder SJ, Hammond KJ, Scollay R, Godfrey DI. Journal: Diabetes; 1997 Apr; 46(4):572-82. PubMed ID: 9075796. Abstract: NOD mice develop spontaneous IDDM as a result of T-cell-mediated autoimmune destruction of pancreatic beta-cells. It is not known why these T-cells become autoreactive, nor is it clear whether the breakdown in self-tolerance reflects a general problem in T-cell development or a selective defect in an as yet undefined regulatory cell population. In this study, we showed that NOD mice, although relatively normal with regard to most thymocyte subsets, exhibit a marked deficiency in alphabetaTCR+CD4-CD8- (alphabeta+DN) T-cells in the thymus and, to a lesser extent, in the periphery. These T-cells have been termed NKT cells (NK1.1+-like T-cells) because they share some cell surface markers with conventional natural killer (NK) cells. To examine the role of these cells in the pathogenesis of IDDM, semiallogeneic or syngeneic double-negative (DN) thymocytes, enriched for NKT cells, were transferred into intact 4-week-old NOD recipients; the onset of diabetes was then monitored over the ensuing 30 weeks. Mice receiving NKT-enriched thymocytes did not develop diabetes, whereas mice receiving unfractionated thymocytes or phosphate-buffered saline developed diabetes at the normal rate. NKT cells represent a distinct T-cell lineage that has been shown to play a role in immunoregulation in vivo. The deficiency of these cells observed in NOD mice may therefore contribute to destruction of pancreatic islet cells by conventional T-cells.[Abstract] [Full Text] [Related] [New Search]