These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of serotonin on caudal raphe neurons: activation of an inwardly rectifying potassium conductance.
    Author: Bayliss DA, Li YW, Talley EM.
    Journal: J Neurophysiol; 1997 Mar; 77(3):1349-61. PubMed ID: 9084602.
    Abstract:
    We used whole cell current- and voltage-clamp recording in neonatal rat brain stem slices to characterize firing properties and effects of serotonin (5-HT) on neurons (n = 225) in raphe pallidus (RPa) and raphe obscurus (ROb). Of a sample of 51 Lucifer yellow-filled neurons recovered after immunohistochemical processing to detect tryptophan hydroxylase (TPH), 34 were found to be TPH immunoreactive (i.e., serotonergic). Serotonergic neurons had long-duration action potentials and fired spontaneously at low frequency (approximately 1 Hz) in a pattern that was often irregular; at higher firing frequencies the discharge became more regular. These neurons displayed spike frequency adaptation, with maximal steady-state firing rates of < 4 Hz. The overwhelming majority of identified serotonergic neurons was hyperpolarized by bath-applied 5-HT (94%; n = 32 of 34); conversely, most cells in this sample that were hyperpolarized by 5-HT were serotonergic (78%; n= 32 of 41). TPH-immunonegative neurons were separated into two populations. One group had properties that were indistinguishable from those of serotonergic caudal raphe neurons. The other group was truly distinct; those neurons had more hyperpolarized resting membrane potentials, were not spontaneously active, had shorter-duration action potentials, and were depolarized by 5-HT. Caudal raphe neurons responded to 5-HT (1-5 microM) with membrane hyperpolarization in current clamp (-13.4 +/- 1.1 mV, mean +/- SE) or with outward current in voltage clamp (16.0 +/- 1.4 pA). The current induced by 5-HT was inwardly rectifying and associated with an increase in peak conductance and was highly selective for K+. It was completely blocked by 0.2 mM Ba2+ but not by glibenclamide, an inhibitor of ATP-sensitive K+ channels. Effects of 5-HT were dose dependent, with an EC50 of 0.1-0.3 microM. The 5-HT1A agonist 8-OH-DPAT mimicked, and the 5-HT1A antagonists (+)WAY 10,0135 and NAN 190 blocked, effects of 5-HT. The 5-HT2A/C antagonist ketanserin did not inhibit the effects of 5-HT. Fewer 5-HT-responsive neurons were encountered in slices exposed acutely to pertussis toxin (approximately 13%) than in adjacent control slices not exposed to pertussis toxin (approximately 85%). In addition, in neurons recorded with pipettes containing GTP gamma S (0.1 mM), 5-HT induced an inwardly rectifying current that did not reverse on washing. In many cells recorded with GTP gamma S, a current developed in the absence of agonist that had properties identical to those of the 5-HT-sensitive current; when followed for extended periods, the agonist-independent GTP gamma S-induced conductance desensitized, returning toward control levels with a time constant of approximately 18 min. Together these results indicate that serotonergic neurons of ROb and RPa are spontaneously active in a neonatal rat brain stem slice preparation and that hyperpolarization of those neurons by 5-HT1A receptor stimulation is due to pertussis toxin-sensitive G protein-mediated activation of an inwardly rectifying K+ conductance. In addition, we identified a group of nonserotonergic medullary raphe neurons that had distinct electrophysiological properties and that was depolarized by 5-HT.
    [Abstract] [Full Text] [Related] [New Search]