These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Characterization and reconstitution of the nucleational complex responsible for mineral formation by growth plate cartilage matrix vesicles. Author: Wu LN, Genge BR, Sauer GR, Wuthier RE. Journal: Connect Tissue Res; 1996; 35(1-4):309-15. PubMed ID: 9084669. Abstract: Previous studies revealed that matrix vesicles (MV) have an acid-labile nucleationally active core (ALNAC) essential for mineral formation; current studies were aimed at characterizing and reconstituting ALNAC. SDS-PAGE and FTIR analyses revealed the presence of lipids, proteins and amorphous calcium phosphate (ACP) in ALNAC. Extraction with chloroform-methanol reduced, but did not destroy MV calcification; treatment with chloroform-methanol-HCl destroyed all activity. This acidic solvent extracted the annexins, (phosphatidylserine (PS)-dependent Ca(2+)-binding proteins), and dissociated PS-Ca(2+)-Pi complexes present in the MV. Attempts to reconstitute ALNAC, centered on the Ca(2+)-PS-Pi complex. Various pure lipids, electrolytes and proteins were combined to form a synthetic nucleationally active complex (SNAC), analyzing the rate of Ca2+ uptake. Inclusion of phosphatidylethanolamine (PE) or sphingomyelin (SM) with PS, or Mg2+ or Zn2+ with Ca2+, strongly inhibited activity; incorporation of annexin V increased SNAC activity. Thus, approaching from either deconstruction or reconstruction, it appears that ALNAC is composed of ACP complexed with PS and the annexins. Other lipids, proteins and electrolytes modulate its activity. These findings also indicate how ALNAC must be formed in vivo.[Abstract] [Full Text] [Related] [New Search]