These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Unconventional structure of tRNA(Lys)SUU anticodon explains tRNA's role in bacterial and mammalian ribosomal frameshifting and primer selection by HIV-1.
    Author: Agris PF, Guenther R, Ingram PC, Basti MM, Stuart JW, Sochacka E, Malkiewicz A.
    Journal: RNA; 1997 Apr; 3(4):420-8. PubMed ID: 9085848.
    Abstract:
    Transfer RNA(Lys)SUU, with a 5-modified-2-thiouridine at wobble position 34, facilitates -1 frameshifts for correct translation of the Escherichia coli DNA polymerase gamma subunit and retroviral polymerases. Peptidyl-tRNA(Lys)SUU prematurely terminates translation more often than other tRNAs. In order to determine if the anticodon structures of bacterial and mammalian tRNA(Lys)SUU species explain these observations, oligonucleotides corresponding to the anticodon regions of mammalian and E. coli tRNA(Lys)SUU were synthesized and their physicochemical properties compared with that of E. coli tRNA(Glu)SUC. The anticodon region of tRNA(Lys)SUU was stabilized by an unusual interaction between the side chains of the 5-modified-s(2)U34 and N-6-threonylcarbamoyl-adenosine-37 (t(6)A37), a combination of modified nucleosides unique to tRNA(Lys)SUU species. This first observation of modified nucleoside side-chain interactions is analogous to the interactions of amino acid side chains in proteins. The tRNA(Lys)SUU anticodon structure was determined from NMR restraints on model oligonucleotides. With only two of three anticodon bases available for codon pairing, this unconventional anticodon structure is a reasonable explanation for the bacterial and mammalian tRNA(Lys)SUU tendency to frameshift. A two-out-of-three reading of coding triplets also explains the increased rate at which peptidyl-tRNA(Lys)SUU prematurely terminates translation. In addition, modified nucleoside interaction distorts the anticodon loop. The distorted loop is a possible structural determinant for the preferential selection of tRNA(Lys3)SUU as primer of HIV-1 reverse transcriptase in vivo.
    [Abstract] [Full Text] [Related] [New Search]