These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Transforming growth factor-beta 1 modulates myofibroblastic phenotype of rat palatal fibroblasts in vitro.
    Author: Yokozeki M, Moriyama K, Shimokawa H, Kuroda T.
    Journal: Exp Cell Res; 1997 Mar 15; 231(2):328-36. PubMed ID: 9087174.
    Abstract:
    The effects of transforming growth factor-beta 1 (TGF-beta 1) on normal rat palatal fibroblasts in vitro were investigated in the present study in order to unravel the precise mechanisms by which the phenotypic modulation of fibroblasts occurs during the scar formation process. TGF-beta 1 dramatically changed the morphology of normal palatal fibroblasts from polygonal into an elongated shape, which was very similar to that of fibroblasts derived from experimental immature scar tissue in rat palatal mucosa. This morphological transition was concomitant with an increase in the expression of alpha-smooth muscle (alpha-SM) actin protein, a marker for myofibroblasts, when determined by immunocytochemistry. An immunoblot study also revealed that alpha-SM actin expression in palatal fibroblasts became evident after 24 h of TGF-beta 1 treatment and increased time-dependently up to 72 h. Northern blot analysis showed that TGF-beta 1 stimulated endogenous TGF-beta 1 mRNA expression in palatal fibroblasts within 24 h. Neither epidermal growth factor nor basic fibroblast growth factor had any effect on either alpha-SM actin expression or TGF-beta 1 mRNA expression. Pretreatment of palatal fibroblasts with TGF-beta 1 significantly increased the contractile capacity in a three-dimensional collagen gel culture, even when the culture medium was deprived of TGF-beta 1 for 72 h of the experimental period. Moreover, the contractility of scar fibroblasts, which highly expressed alpha-SM actin protein and TGF-beta 1 mRNA, was significantly lowered by a neutralizing antibody to TGF-beta 1. These data strongly suggest that TGF-beta 1 is a potential inducer of phenotypic expression of myofibroblasts in palatal fibroblasts and that auto-induction of TGF-beta 1 mRNA expression may play an important role in the scar formation process in palatal mucosa.
    [Abstract] [Full Text] [Related] [New Search]