These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Vagal afferent innervation of the atria of the rat heart reconstructed with confocal microscopy.
    Author: Cheng Z, Powley TL, Schwaber JS, Doyle FJ.
    Journal: J Comp Neurol; 1997 Apr 28; 381(1):1-17. PubMed ID: 9087415.
    Abstract:
    We have used confocal microscopy to analyze the vagal afferent innervation of the rat heart. Afferents were labeled by injecting 1,1'-dioleyl-3,3,3',3'-tetramethylindocarbocyanine methanesulfonate (DiI) into the nodose ganglia of animals with prior supranodose de-efferentations, autonomic ganglia were stained with Fluoro-gold, and tissues were examined in whole mounts. Distinctively different fiber specializations were observed in the epi-, myo-, and endocardium: Afferents to the epicardium formed complexes associated with cardiac ganglia. These ganglia consisted of four major ganglionated plexuses, two on each atrium, at junctions of the major vessels with the atria. Ganglionic locations and sizes (left > right) were consistent across animals. In addition to principal neurons (PNs), significant numbers of small intensely fluorescent (SIF) cells were located in each of these plexuses, and vagal afferents provided dense pericellular varicose endings around the SIF cells in each ganglionic plexus, with few if any terminations on PNs. In the myocardium, vagal afferents formed close contacts with cardiac muscles, including conduction fibers. In the endocardium, vagal fibers formed "flower-spray" and "end-net" terminals in connective tissue. With three-dimensional reconstruction of confocal optical sections, a novel polymorphism was seen: Some fibers had one or more collaterals ending as endocardial flower sprays and other collaterals ending as myocardial intramuscular endings. Some unipolar or pseudounipolar neurons within each cardiac ganglionic plexus were retrogradely labeled from the nodose ganglia. In conclusion, vagal afferents form a heterogeneity of differentiated endings in the heart, including structured elements which may mediate chemoreceptor function, stretch reception, and local cardiac reflexes.
    [Abstract] [Full Text] [Related] [New Search]