These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Serine phosphorylation of Cbl induced by phorbol ester enhances its association with 14-3-3 proteins in T cells via a novel serine-rich 14-3-3-binding motif.
    Author: Liu YC, Liu Y, Elly C, Yoshida H, Lipkowitz S, Altman A.
    Journal: J Biol Chem; 1997 Apr 11; 272(15):9979-85. PubMed ID: 9092538.
    Abstract:
    Stimulation of the T cell antigen receptor (TCR).CD3 complex induces rapid tyrosine phosphorylation of Cbl, a protooncogene product which has been implicated in intracellular signaling pathways via its interaction with several signaling molecules. We found recently that Cbl associates directly with a member of the 14-3-3 protein family (14-3-3tau) in T cells and that the association is increased as a consequence of anti-CD3-mediated T cell activation. We report here that phorbol 12-myristate 13-acetate stimulation of T cells also enhanced the interaction between Cbl and two 14-3-3 isoforms (tau and zeta). Tyrosine phosphorylation of Cbl was not sufficient or required for this increased interaction. Thus, cotransfection of COS cells with Cbl plus Lck and/or Syk family protein-tyrosine kinases caused a marked increase in the phosphotyrosine content of Cbl without a concomitant enhancement of its association with 14-3-3. Phorbol 12-myristate 13-acetate stimulation induced serine phosphorylation of Cbl, and dephosphorylation of immunoprecipitated Cbl by a Ser/Thr phosphatase disrupted its interaction with 14-3-3. By using successive carboxyl-terminal deletion mutants of Cbl, the 14-3-3-binding domain was mapped to a serine-rich 30-amino acid region (residues 615-644) of Cbl. Mutation of serine residues in this region further defined a binding motif distinct from the consensus sequence RSXSXP, which was recently identified as a 14-3-3-binding motif. These results suggest that TCR stimulation induces both tyrosine and serine phosphorylation of Cbl. These phosphorylation events allow Cbl to recruit distinct signaling elements that participate in TCR-mediated signal transduction pathways.
    [Abstract] [Full Text] [Related] [New Search]