These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Identification of the single channels that underlie the N-type and L-type calcium currents in bullfrog sympathetic neurons. Author: Elmslie KS. Journal: J Neurosci; 1997 Apr 15; 17(8):2658-68. PubMed ID: 9092587. Abstract: Most of the whole-cell calcium current of frog sympathetic neurons is an N-type current, blocked by omega-conotoxin GVIA (omegaCGVIA). Thus, these cells should be an excellent system to study the properties of single N-type channels. However, a channel that is active near -10 mV in isotonic Ba2+, originally identified as "N-type," corresponds more closely to a omegaCGVIA-resistant component of the whole-cell current observed in 100 mM Ba2+. That conclusion would imply that the true single-channel correlate of the macroscopic N-current remains to be identified in frog sympathetic neurons. I report here recordings from cell-attached patches of a calcium channel that activates in the appropriate voltage range (>0 mV, in isotonic Ba2+) and is blocked by omegaCGVIA. This channel has a slope conductance of 20 pS (range, 17-25 pS) and a single-channel current of -1.3 pA at 0 mV. Other channels active in the same voltage range (24 pS, -1.3 pA at 0 mV) were identified as L-type channels because they exhibited long openings after repolarization in the presence of 1 microM Bay K 8644 and were resistant to omegaCGVIA. A third channel type (13-19 pS) was distinguished by current amplitude (-0.6 pA at 0 mV) and strong inactivation at -40 mV. The similarity in slope conductance among these channels demonstrates that distinguishing them requires the consideration of additional properties. The omegaCGVIA-sensitive channel can be identified as an N-type calcium channel.[Abstract] [Full Text] [Related] [New Search]