These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Protein hinge bending as seen in molecular dynamics simulations of native and M61 mutant T4 lysozymes.
    Author: Arnold GE, Ornstein RL.
    Journal: Biopolymers; 1997 Apr 15; 41(5):533-44. PubMed ID: 9095676.
    Abstract:
    A dynamical model of interdomain "hinge bending" of T4 lysozyme in aqueous solution has been developed on the basis of molecular dynamics (MD) simulation. The MD model study provides a description of the conformational reorganization expected to occur for the protein in aqueous solution as compared to the crystalline environment. Three different 500 ps molecular dynamics simulations were calculated, each using a distinctly different crystal conformation of T4 lysozyme as the starting points of the MD simulations. Crystal structures of wild-type lysozyme and "open" and "closed" forms of M61 variant structures were analyzed in this study. Large-scale, molecular-conformational rearrangements were observed in all three simulations, and the largest structural change was found for the open form of the M61 allomorph. All three simulated proteins had closed relative to the wild-type crystal structure, and the closure of the "jaws" of the active site cleft occurred gradually over the time course of the trajectories. The time average MD structures, calculated over the final 50 ps of each trajectory, had all adapted to conformations more similar to each other than to their incipient crystal forms. Using a similar MD protocol on cytochrome P450BM-3 [M. D. Paulsen and R. L. Ornstein (1995) Proteins: Structure Function and Genetics, Vol. 27, pp. 237-243] we have found that the opposite type of motion relative to the starting crystal structure, that is, the open form of the crystal structure, had opened to a greater degree relative to the incipient crystal structure form. Therefore we do not believe that either result is merely a simulation artifact, but rather the protein dynamics are due to protein relaxation in the absence of crystal packing forces in the simulated solution environments.
    [Abstract] [Full Text] [Related] [New Search]