These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Alkaline pH and internal calcium increase Na+ and K+ effluxes in LK sheep red blood cells in Cl--free solutions. Author: Ortiz-Carranza O, Miller ME, Adragna NC, Lauf PK. Journal: J Membr Biol; 1997 Apr 01; 156(3):287-95. PubMed ID: 9096069. Abstract: We examined the effects of pH, internal ionized Ca (Ca2+i), cellular ATP, external divalent cations and quinine on Cl-independent ouabain-resistant K+ efflux in volume-clamped sheep red blood cells (SRBCs) of normal high (HK) and low (LK) intracellular K+ phenotypes. In LK SRBCs the K+ efflux was higher at pH 9.0 (350%) than at pHs 7. 4 and 6.5, and was inhibited by external divalent cations, quinine, and cellular ATP depletion. The above findings suggest that the increased K+ efflux at alkaline pH is due to the opening of ion channels or specific transporters in the cell membrane. In addition, K+ efflux was activated (100%) when Ca2+i was increased (+A23187, +Ca2+o) into the microm range. However, in comparison to human red blood cells, the Ca2+i-induced increase in K+ efflux in LK SRBCs was fourfold smaller and insensitive to quinine and charybdotoxin. The Na+ efflux was also higher at pH 9.0 than at pH 7.4, and activated (about 40%) by increasing Ca2+i. In contrast, in HK SRBCs the K+ efflux at pH 9.0 was neither inhibited by quinine nor activated by Ca2+i. These studies suggest the presence in LK SRBCs, of at least two pathways for Cl--independent K+ and Na+ transport, of which one is unmasked by alkalinization, and the other by a rise in Ca2+i.[Abstract] [Full Text] [Related] [New Search]