These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of hypothermia on energy metabolism in rat and Richardson's ground squirrel hearts.
    Author: Belke DD, Wang LC, Lopaschuk GD.
    Journal: J Appl Physiol (1985); 1997 Apr; 82(4):1210-8. PubMed ID: 9104858.
    Abstract:
    Glycolysis, glucose oxidation, palmitate oxidation, and cardiac function were measured in isolated working hearts from ground squirrels and rats subjected to a hypothermia-rewarming protocol. Hearts were perfused initially for 30 min at 37 degrees C, followed by 2 h of hypothermic perfusion at 15 degrees C, after which hearts were rewarmed to 37 degrees C and further perfused for 30 min. Functional recovery in ground squirrel hearts was greater than in rat hearts after rewarming. Hypothermia-rewarming had a similar general effect on the various metabolic pathways in both species. Despite these similarities, total energy substrate metabolic rates were greater in rat than ground squirrel hearts during hypothermia despite a lower level of work being performed by the rat hearts, indicating that rat hearts are less efficient than ground squirrel hearts during hypothermia. After rewarming, energy substrate metabolism recovered completely in both species, although cardiac work remained depressed in rat hearts. The difference in functional recovery between rat and ground squirrel hearts after rewarming cannot be explained by general differences in energy substrate metabolism during hypothermia or after rewarming.
    [Abstract] [Full Text] [Related] [New Search]