These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Oxidative stress, mutant SOD1, and neurofilament pathology in transgenic mouse models of human motor neuron disease.
    Author: Tu PH, Gurney ME, Julien JP, Lee VM, Trojanowski JQ.
    Journal: Lab Invest; 1997 Apr; 76(4):441-56. PubMed ID: 9111507.
    Abstract:
    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that primarily affects motor neurons in the spinal cord and brain stem. About 10% of all ALS cases are familial (FALS), inherited in an autosomal dominant manner. One fifth of FALS patients carry mutations in the Cu/Zn superoxide dismutase (SOD1) gene, and several lines of transgenic mice have been engineered to express mutant forms of the SOD1 gene that are linked to FALS. Significantly, many of these transgenic lines of mice develop a motor neuron disease (MND) that resembles human FALS. Oxidative stress induced by human SOD1 mutations is believed to play an important role in the pathogenesis of FALS and the FALS-like MND seen in the mutant SOD1 transgenic mice. For example, two lines of these mice showed prominent degeneration of mitochondria and endoplasmic reticulum in spinal cord neurons. Furthermore, recent studies have shown that neurofilament (NF)-rich spheroids. Lewy body-like NF inclusions, altered ubiquitin immunoreactivity, and Golgi fragmentation occur in the spinal cord motoneurons of these mutant SOD1 transgenic mice. Because these lesions recapitulate hallmark abnormalities of human ALS, mutant SOD1 transgenic mice provide a useful model for studies designed to elucidate the pathogenesis of ALS. Furthermore, transgenic mice that overexpress NF proteins also develop a clinical and pathologic phenotype similar to human MND, and polymorphisms in an NF gene have been linked to patients with ALS. Collectively, these observations implicate NF protein abnormalities in the pathogenesis of this disorder. Accordingly, this review summarizes recent insights into mechanisms of motor neuron degeneration in ALS that have emerged from studies of these new animal models of this neurodegenerative disease.
    [Abstract] [Full Text] [Related] [New Search]