These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Up-regulation of insulin/insulin-like growth factor-I hybrid receptors during differentiation of HT29-D4 human colonic carcinoma cells.
    Author: Garrouste FL, Remacle-Bonnet MM, Lehmann MM, Marvaldi JL, Pommier GJ.
    Journal: Endocrinology; 1997 May; 138(5):2021-32. PubMed ID: 9112401.
    Abstract:
    To assess the autocrine function of insulin-like growth factor II (IGF-II) in the balance of proliferation and differentiation in HT29-D4 human colonic cancer cells, we studied the expression of IGF-I receptors (IGF-IR) and insulin receptors (IR) in relation to the state of cell differentiation. IGF-IR and IR were expressed in both undifferentiated and enterocyte-like differentiated HT29-D4 cells. IGF-IR had two isoforms with a 97-kDa and a 102-kDa beta-subunit. In addition, HT29-D4 cells expressed hybrid receptors (HR) formed by the association of two alphabeta heterodimers from both IR and IGF-IR. HR were evidenced through 1) inhibition of IGF-I binding by the B6 anti-IR antibody and 2) immunoprecipitation with the alpha-IR3 anti-IGF-IR antibody, which revealed an additional 95-kDa IR beta-subunit that disappeared when the heterotetrameric receptor was dissociated by disulfide reduction into alphabeta heterodimers before immunoprecipitation. Like IGF-IR, HR had a high affinity for IGF-I (Kd, approximately 1.5 nM), but did not bind insulin significantly; the latter interacted with the native IR only (Kd, approximately 4 nM). In the differentiated HT29-D4 cell monolayer, all receptor species were strongly polarized (>97%) toward the basolateral membrane. Moreover, HT29-D4 cell differentiation was accompanied by an approximately 2-fold increase in the number of IR, whereas the number of IGF-I-binding sites was unaltered. However, in differentiated HT29-D4 cells, approximately 55% of the latter were involved in HR vs. approximately 20% in undifferentiated HT29-D4 cells. Thus, HT29-D4 cell differentiation is characterized by an up-regulation (approximately 3-fold) of the level of HR coupled to a down-regulation (approximately 40%) of the level of native tetrameric IGF-IR. Alterations were induced early during the cell differentiation process, i.e. 5 days postconfluence, and remained unchanged for at least 21 days. Taken together, these results suggest that the IGF-II autocrine loop in HT29-D4 cells may trigger distinct signaling pathways if it activates native IGF-IR, which predominate in undifferentiated cells, or if it activates HR, which are up-regulated in differentiated cells.
    [Abstract] [Full Text] [Related] [New Search]