These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Muscarinic modulation of the oscillatory and repetitive firing properties of entorhinal cortex layer II neurons. Author: Klink R, Alonso A. Journal: J Neurophysiol; 1997 Apr; 77(4):1813-28. PubMed ID: 9114238. Abstract: Neurons in layer II of the entorhinal cortex (EC) are key elements in the temporal lobe memory system because they integrate and transfer into the hippocampal formation convergent sensory input from the entire cortical mantle. EC layer II also receives a profuse cholinergic innervation from the basal forebrain that promotes oscillatory dynamics in the EC network and may also implement memory function. To understand the cellular basis of cholinergic actions in EC, we investigated by intracellular recording in an in vitro rat brain slice preparation the muscarinic modulation of the electroresponsive properties of the two distinct classes of medial EC layer II projection neurons, the stellate cells (SCs) and non-SCs. In both SCs and non-SCs, muscarinic receptor activation with carbachol (CCh, 10-50 microM) caused atropine-sensitive (300 nM) membrane depolarization. In SCs, the CCh-induced membrane depolarization was associated with subthreshold membrane potential oscillations and "spike cluster" discharge, which are typically expressed by these cells on depolarization. CCh, however, caused a decrease of the dominant frequency of the membrane potential oscillations from 9.2 +/- 1.1 (SD) Hz to 6.3 +/- 1.1 Hz, as well as a decrease of the intracluster firing frequency from 18.1 +/- 1.7 Hz to 13.6 +/- 1.3 Hz. In addition, spike cluster discharge was less robust, and the cells tended to shift into tonic firing during CCh. In contrast to SCs, in non-SCs, CCh drastically affected firing behavior by promoting the development of voltage-dependent, long-duration (1-5 s) slow bursts of action potentials that could repeat rhythmically at slow frequencies (0.2-0.5 Hz). Concomitantly, the slow afterhyperpolarization (sAHP) was replaced by long-lasting plateau postdepolarizations. In both SCs and non-SCs, CCh also produced conspicuous changes on the action potential waveform and its afterpotentials. Notably, CCh significantly decreased spike amplitude and rate of rise, which suggests muscarinic modulation of a voltage-dependent Na+ conductance. Finally, we also observed that whereas CCh abolished the sAHP in both SCs and non-SCs, the membrane-permeant analogues of adenosine 3',5'-cyclic monophosphate, 8-(4-chlorophenylthio)-adenosine-cyclic monophosphate and 8-bromo-adenosine-cyclic-monophosphate, abolished the sAHP in SCs but not in non-SCs. The data demonstrate that cholinergic modulation further differentiates the intrinsic electroresponsiveness of SCs and non-SCs, and add support to the presence of two parallel processing systems in medial EC layer II that could thereby differentially influence their hippocampal targets. The results also indicate an important role for the cholinergic system in tuning the oscillatory dynamics of entorhinal neurons.[Abstract] [Full Text] [Related] [New Search]