These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of [Ca2+]i, SR Ca2+ load, and rest on Ca2+ spark frequency in ventricular myocytes. Author: Satoh H, Blatter LA, Bers DM. Journal: Am J Physiol; 1997 Feb; 272(2 Pt 2):H657-68. PubMed ID: 9124422. Abstract: In heart, spontaneous local increases in cytosolic Ca2+ concentration ([Ca2+]i) called "Ca2+ sparks" may be fundamental events underlying both excitation-contraction coupling and resting Ca2+ leak from the sarcoplasmic reticulum (SR). In this study, resting Ca2+ sparks were analyzed in rabbit and rat ventricular myocytes with laser scanning confocal microscopy and the fluorescent Ca2+ indicator fluo 3. During the first 20 s of rest after regular electrical stimulation, both the frequency of Ca2+ sparks and SR Ca2+ content gradually decreased in rabbit. When rabbit SR Ca2+ content was decreased by reduction of stimulation rate. the initial resting spark frequency was also decreased, even though resting [Ca2+]i was unchanged. The rest-dependent decrease in spark frequency in rabbit cells was prevented by inhibition of Na+/Ca2+ exchange (which also prevents SR Ca2+ depletion during rest). These results suggest that elevation of SR Ca2+ content can increase Ca2+ spark frequency. In contrast to rabbit cells, 20 s of rest produced a gradual increase in spark frequency in rat cells, although SR Ca2+ content was constant and Ca2+ influx was completely prevented. This indicates that there is a time-dependent increase in spark probability during rest that is independent of [Ca2+]i or SR Ca2+. This effect was also apparent in rabbit cells when SR Ca2+ depletion was prevented by blocking Na+/Ca2+ exchange. Stimulation of Ca2+ extrusion via Na+/Ca2+ exchange in the rat (by Ca2+-free superfusion, which slowly depletes SR Ca2+ content) converted the normal rest-dependent increase in spark frequency to a decrease. The amplitude of individual Ca2+ sparks increased with increasing SR Ca2+ content. In the Ca2+-overloaded state, fusion of sparks or long-lasting localized increases of [Ca2+]i were observed with increased spark frequency. We conclude that the resting frequency of Ca2+ sparks can be independently affected by changes in SR Ca2+ content, [Ca2+]i, or rest period. The latter may reflect recovery of the SR Ca2+ release channels from inactivation or adaptation.[Abstract] [Full Text] [Related] [New Search]