These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Birth-related changes in energy metabolism enzymes and Na-K-ATPase in kidney proximal convoluted tubule cells. Author: Wijkhuisen A, Djouadi F, Vilar J, Merlet-Benichou C, Bastin J. Journal: Am J Physiol; 1997 Mar; 272(3 Pt 1):C787-93. PubMed ID: 9124512. Abstract: In the proximal convoluted tubule (PCT) of rat kidney, reabsorption is known to take place during fetal life, but no data on Na-K-ATPase and mitochondrial energy metabolism enzymes in this epithelium were available at fetal and neonatal stages. With use of the quantitative histochemistry approach, Na-K-ATPase, citrate synthase (tricarboxylic acid cycle), 3-ketoacid CoA-transferase and thiolase (ketone body oxidation), beta-hydroxyacyl-CoA dehydrogenase (fatty acid oxidation), and acetylcarnitine transferase (acetyl-CoA transport through mitochondrial membrane) were microassayed in PCT and metanephric mesenchyme of fetal and newborn rat kidney. The data indicate that, during fetal life, PCT differentiation involves concomitant increases in Na-K-ATPase and oxidative enzyme activities, supporting the hypothesis that mitochondria could play an active role in cellular ATP turnover when reabsorptive functions develop. Birth resulted in marked increases in the activities of Na-K-ATPase and of fatty acid and ketone body oxidation enzymes in the PCT, whereas no changes in enzyme activities occurred in the metanephric mesenchyme between the fetal and the newborn stage.[Abstract] [Full Text] [Related] [New Search]